现代机器人需要准确的预测才能在现实世界中做出最佳决策。例如,自动驾驶汽车需要对其他代理商的未来行动进行准确的预测来计划安全轨迹。当前方法在很大程度上依赖历史时间序列来准确预测未来。但是,完全依靠观察到的历史是有问题的,因为它可能被噪声损坏,有离群值或不能完全代表所有可能的结果。为了解决这个问题,我们提出了一个新的框架,用于生成用于机器人控制的强大预测。为了建模影响未来预测的现实世界因素,我们介绍了对手的概念,对敌人观察到了历史时间序列,以增加机器人的最终控制成本。具体而言,我们将这种交互作用建模为机器人的预报器和这个假设对手之间的零和两人游戏。我们证明,我们建议的游戏可以使用基于梯度的优化技术来解决本地NASH均衡。此外,我们表明,经过我们方法训练的预报员在分布外现实世界中的变化数据上的效果要比基线比基线更好30.14%。
translated by 谷歌翻译
连接和自动驾驶汽车(CAVS)正在越来越广泛地部署,但是目前尚不清楚如何最好地部署智能基础架构以最大程度地发挥其功能。一个关键的挑战是确保骑士能够可靠地感知其他代理,尤其是被阻塞的药物。另一个挑战是,智能基础架构的渴望是自主的,并且很容易扩展到与现代交通信号灯相似的广阔部署。目前的工作提出了自我监督的交通顾问(SSTA),这是一种基础架构边缘设备概念,该概念利用与通信和共同培训框架共同利用自我监督的视频预测,以启用整个智能城市的自动预测流量。 SSTA是一款静态安装的摄像头,可俯瞰复杂的交通流量的交点或区域,可预测流量流作为未来的视频帧,并学会与相邻的SSTA进行通信,以在视野(FOV)中出现在视野中之前预测流量。拟议的框架旨在达到三个目标:(1)设备间的通信以实现高质量的预测,(2)对任意数量的设备的可伸缩性,以及(3)终身在线学习以确保对不断变化的环境的适应性。最后,SSTA可以直接广播其未来预测的视频框架,以供骑士进行自己的后期处理以进行控制。
translated by 谷歌翻译
在多游戏设置中运行的机器人必须同时对共享环境的人类或机器人代理的环境和行为进行建模。通常使用同时定位和映射(SLAM)进行这种建模;但是,SLAM算法通常忽略了多人相互作用。相比之下,运动计划文献经常使用动态游戏理论来在具有完美本地化的已知环境中明确对多个代理的非合作相互作用进行建模。在这里,我们介绍了GTP-Slam,这是一种基于迭代最佳响应的小说最佳SLAM算法,可以准确执行状态定位和映射重建,同时使用游戏理论先验来捕获未知场景中多个代理之间固有的非合作互动。通过将基本的大满贯问题作为潜在游戏,我们继承了强有力的融合保证。经验结果表明,当部署在现实的交通模拟中时,我们的方法比在广泛的噪声水平上的标准捆绑捆绑调整算法更准确地进行本地化和映射。
translated by 谷歌翻译
We develop a hierarchical controller for head-to-head autonomous racing. We first introduce a formulation of a racing game with realistic safety and fairness rules. A high-level planner approximates the original formulation as a discrete game with simplified state, control, and dynamics to easily encode the complex safety and fairness rules and calculates a series of target waypoints. The low-level controller takes the resulting waypoints as a reference trajectory and computes high-resolution control inputs by solving an alternative formulation with simplified objectives and constraints. We consider two approaches for the low-level planner, constructing two hierarchical controllers. One approach uses multi-agent reinforcement learning (MARL), and the other solves a linear-quadratic Nash game (LQNG) to produce control inputs. The controllers are compared against three baselines: an end-to-end MARL controller, a MARL controller tracking a fixed racing line, and an LQNG controller tracking a fixed racing line. Quantitative results show that the proposed hierarchical methods outperform their respective baseline methods in terms of head-to-head race wins and abiding by the rules. The hierarchical controller using MARL for low-level control consistently outperformed all other methods by winning over 88% of head-to-head races and more consistently adhered to the complex racing rules. Qualitatively, we observe the proposed controllers mimicking actions performed by expert human drivers such as shielding/blocking, overtaking, and long-term planning for delayed advantages. We show that hierarchical planning for game-theoretic reasoning produces competitive behavior even when challenged with complex rules and constraints.
translated by 谷歌翻译
我们研究了覆盖的阶段 - 避免多个代理的动态游戏,其中多个代理相互作用,并且每种希望满足不同的目标条件,同时避免失败状态。 Reach-避免游戏通常用于表达移动机器人运动计划中发现的安全关键最优控制问题。虽然这些运动计划问题存在各种方法,但我们专注于找到时间一致的解决方案,其中计划未来的运动仍然是最佳的,尽管先前的次优行动。虽然摘要,时间一致性封装了一个非常理想的财产:即使机器人早期从计划发出的机器人的运动发散,即,由于例如内在的动态不确定性或外在环境干扰,即使机器人的运动分歧,时间一致的运动计划也保持最佳。我们的主要贡献是一种计算 - 避免多种代理的算法算法,避免呈现时间一致的解决方案。我们展示了我们在两位和三位玩家模拟驾驶场景中的方法,其中我们的方法为所有代理商提供了安全控制策略。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Coronary Computed Tomography Angiography (CCTA) provides information on the presence, extent, and severity of obstructive coronary artery disease. Large-scale clinical studies analyzing CCTA-derived metrics typically require ground-truth validation in the form of high-fidelity 3D intravascular imaging. However, manual rigid alignment of intravascular images to corresponding CCTA images is both time consuming and user-dependent. Moreover, intravascular modalities suffer from several non-rigid motion-induced distortions arising from distortions in the imaging catheter path. To address these issues, we here present a semi-automatic segmentation-based framework for both rigid and non-rigid matching of intravascular images to CCTA images. We formulate the problem in terms of finding the optimal \emph{virtual catheter path} that samples the CCTA data to recapitulate the coronary artery morphology found in the intravascular image. We validate our co-registration framework on a cohort of $n=40$ patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our results indicate that our non-rigid registration significantly outperforms other co-registration approaches for luminal bifurcation alignment in both longitudinal (mean mismatch: 3.3 frames) and rotational directions (mean mismatch: 28.6 degrees). By providing a differentiable framework for automatic multi-modal intravascular data fusion, our developed co-registration modules significantly reduces the manual effort required to conduct large-scale multi-modal clinical studies while also providing a solid foundation for the development of machine learning-based co-registration approaches.
translated by 谷歌翻译